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AkmPrr Nonlinear susceptibilities in the SK model of the spin glass are studied in terms 
of a Parisi symmetry breaking scheme. It is shown that the nonlinear susceptibility xz for 
an AC field is negatively divergent in the paramagnetic phase near the Almeida-Thouless 
line, and the x2 in the spin glass phase changes according to the frequency scale of the AC 
field. 

It has been shown that the nonlinear susceptibility x2 has a negatively divergent 
behaviour at the spin glass transition temperature TBo in the zero external field both 
theoretically (Katsura 1976, Suzuki 1977) and experimentally (Chikazawa et a1 1979). 
In the non-zero static external field the spin glass phase is separated at the Almeida- 
Thouless (AT) line T,(H) (de Almeida and Thouless 1978) from the paramagnetic 
phase. In this letter it is shown that in the non-zero static external field, the x2 for the 
infinitesimal field with the same time scale as the static field has no singular behaviour, 
but the x2 for the infinitesimal field with a shorter time scale than the static field has 
a singular behaviour in the neighbourhood of the AT line in terms of a Parisi symmetry 
breaking scheme (Parisi 1980). 

We follow the formulation by Parisi (1980) and the details are given in his paper. 
We consider the SK model (Sherrington and Kirkpatrick 1975) in small static and very 
small AC fields near T,(H). In this scheme the AC field is considered as the replica 
symmetry breaking in the correlation between the external fields with the different 
replica index HaH,. In this system we have the free energy per spin 

F( T) = max F( Q) 
t CJ} 

+F(Q)Jo=o (1) 

where 7 = 1 - T and (&) is the matrix of the order parameter given by Parisi (1980) 
and we consider explicitly the external field with a replica index. After the Parisi 
parametrisation HaHs + H z ( x ) ,  we have 

H 2 ( x )  = h2 x < x1 

= h2+ h: x >  x1 (2) 

where h is considered as a static field and h, as an AC field with the frequency scale 
x1 and we assume 1 >> h2 >> h:. 
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Calculating dF/dOaB = 0, we have 

2q(X)(T-q) + $ q 3 ( X )  = ( Q ( x )  -4(x’))2d~’-  h2-  h : b ( x - X l ) ;  

(3) 
lox 

4’ lo1 4 ( x )  dx 

after performing the Parisi parametrisation. 
First we consider the solution in the paramagnetic phase. We have a solution: 

4 ( x )  = 40 x e x1 

= 40+ ss x>x1 (4) 

+ f T 2  + ( h2 + h:)/2T+ [ I +  ( 1/2T)($T2- h2/ 7)]X1& ( 5 )  

~ q =  h : / ( h ’ / ~ - $ ~ ’ ) .  ( 6 )  

where qo and 8q are determined by equations (3) and (4) and we have at T >> 2l”h 

40 

We define the time scale dependent susceptibility following the discussion of Hertz 
(1983): 

(q(x)-q(x‘))dx’ (7) 

From this we have 

As the AT line is given by h2 = $ T ~ ,  the x 2 ( x >  xl) = d2G(x > xl)/dh: is negatively 
divergent at the AT line. 

Next we consider the solutions in the spin glass phase. Differentiating equation 
(3) with respect to x, we have 

Differentiating equation (9) with respect to x ,  we have 

qf(x)(2q(x) - x )  = 0 (10) 
where we have assumed that x # x1 and q ’ ( x )  # 0. 

field: case 1 is x1 > 27, case 2 is 2(3?)1’3 > xl, and case 3 is 27> x1 > 2(ah2)1’3. 
We have three cases according to the value of the frequency scale x1 of the AC 

First we consider case 1. Here we have the next solution 

d x )  = 4x0 O < X < X o  

= t x 2 + 8 q  x1< x < 1. 

where we used equation (10). Taking x + xo+O in equation (9), we have 

4 = T +  (~XO)’. (12) 
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Taking x + xo + 0 in equation (3), we have 

( 4 ~ ~ ) ~  = :h2. (13) 

The 6q is determined by substituting x = x1 +O and x = x1 -0 in equation (3). For 
small hl,  we have 

(W2= h 3 ( X 1 - X 2 ) .  (14) 

The x2 is determined by using 1; q(x) dx = ixg +4x2 - ax: + 6q( 1 - xl) and equation (12) 
as follows 

sx: -4X2 + 7 - (1 - x,)h,/( x1 - x p  = 0. (15) 

The transition temperature rg is determined by taking x2+ xo in this equation. If we 
consider that the hl is infinitesimal, we have the AT line rg- ( 3 f 1 ~ ) " ~ .  If we consider 
that h = 0 and hl is small but finite, we have 

rgo= (1 -x1)hl/(x1)1'2. 

This result shows that if the amplitude of the applied AC field hl is finite, the transition 
temperature TBo decreases linearly to the amplitude hl, and if the hl is constant and 
the frequency scale x1 can be changed, Tgo decreases linearly to 1 - x1 at 0 << x1 4 1. 
The phenomenon that T .  decreases as the frequency scale in the measurement 
decreases has often been observed experimentally (Nire 1982, Lohneysen et a1 1978). 

Next we consider case 2. We have the next solution in this case: 

4(x)=4xo-@ O C X C X ,  

= ;xo 

= $x 

= 4x2 

x1 c x < xo 
XOC x c x2 

x2< x c 1. 

From similar considerations to case 1, we have 

(W2= h:/(xo-xl) 

($x0)3 3 :h~+:xlxohl/(xo - x1)1/2 

(20) 

(21) 

1 2 - 1  4x2 Zx2+7'0 

4 = T +  (fx0)'- x1& = 7 +  

We notice the difference between the transition temperatures in case 1 and case 2 
which are obtained by taking x2+xo in equations (15) and (20), if there are a small 
IX field h and a very small finite AC field hl. 

Finally we consider case 3. We have the solution 
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From similar considerations to case 1, we have 

6q = ( 3h1)2/3 (23) 

( txo )  = (3?)1’3 (24) 

$Xz-$X2+ 7 = 0 ( 2 5 )  

4‘ = 7 + ($x& (26) 

Using equation (7), we have the susceptibilities in the spin glass phase in each case 
as follows: 

case 1 

case 2 

case 3 

G(0) = 1 - ($h2)2/3 
G( X I  +0) = G(0) 1 - 72 - hJ(x1-  27)”’ 

G(0) = 1 - (3h2)2/3 

~ ( 1 )  = 1 - 2 
G(x,+O)= 1 - (~h2)2/3-~lh1/(2(3h2)1’3-~1)1/2 

G(0) 1: 1 - ($I’)~/~ 

G( I )  = 1 - T* 

G(x,+O) L- 1 -$[XI + (3h:)1/3]2. 

(27) 

(29) 

The nonlinear susceptibility for the infinitesimal AC field x2 = d2G(xI +O)/dh:(,,,o is 
divergent only in case 3. 

In case 3, if we consider that h = 0 and hl is small but finite, solution (23) is correct 
at x, > Sq. When x1 < Sq, we have the next solution 

from equation (31). When b=0 ,  we have the result in the static field (24). When 
b = 0, we have equation (23). The transition temperature 7g is determined by x2 + xo 
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in equation (32) as 
rg= h:’3/(3- b)lI3 (35) 

When b = 0, the rg is identified as the AT line. When b is increased to larger than two, 
that is, the frequency scale is increased sufficiently, the AT line is shifted to higher 
field. This phenomenon was observed experimentally (Salamon and Tholence 1983). 
When x1 >> Sq, the transition temperature has a crossover from T~ by equation (36) to 
T~~ by equation (16). 

I express my thanks for the encouragement of Professors S Katsura and S Inawashiro. 
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